Generation of novel epothilone analogs with cytotoxic activity by biotransformation.

نویسندگان

  • Li Tang
  • Rong-Guo Qiu
  • Yong Li
  • Leonard Katz
چکیده

The epothilones represent a new class of bacterial natural products with broad spectrum of antiproliferative activity against various types of human tumors and tumor cell lines. The attractive preclinical profile of epothilones has made them promising lead compounds for novel anticancer agents and has spurred a strong interest in obtaining different derivatives to fully evaluate their therapeutic potentials. We have generated a number of novel epothilone D and 10,11-dehydroepothilone D (Epo490) analogs via biotransformation using Amycolata autotrophica to alter the oxidation state of the parental compounds. The bioconverted compounds displayed different degrees of potency in cytotoxicity assays against a panel of human tumor cell lines, with 11-hydroxyepothilone D, 14-hydroxyepothilone D, and 21-hydroxyepothilone D showing comparable activity to that of epothilone D, and 21-hydroxy Epo490 being comparable to Epo490. The addition of hydroxyl group(s) seems to cause a decrease in cytotoxic activity against multiple drug resistant cell lines (with overexpressed P-glycoprotein). The compounds generated by biotransformation exert differential effects on tubulin polymerization, which correlate with their biological activities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

اثرات سایتوتوکسیک و القاء آپوپتوزیس بعضی از مشتقات جدید ترکیبات کرومن

Background: 4-Aryl-4H-chromenes are novel anticancer agents which induce apoptosis in cancer cells. These compounds were found to induce apoptosis by targeting the tubulin/microtubule system in cell proliferation process. The aim of this study was to report cyototoxic and apoptosis inducing activities of a new series of synthesized 4-aryl-4H-chromenes compounds. Methods: The in vitro cytotoxic...

متن کامل

Generation of novel rapamycin structures by microbial manipulations.

A new rapamycin producing culture was isolated and designated as Actinoplanes sp. N902-109. The addition of a cytochrome P-450 inhibitor and precursor feeding using this culture, and biotransformation approaches generated new rapamycin analogs with modifications at C-4, C-9, C-16, C-27, C-28 and/or C-39. The immunosuppressive activity of the resulting analogs was established in the mixed lympho...

متن کامل

Chemical synthesis and biological properties of pyridine epothilones.

BACKGROUND Numerous analogs of the antitumor agents epothilones A and B have been synthesized in search of better pharmacological profiles. Insights into the structure-activity relationships within the epothilone family are still needed and more potent and selective analogs of these compounds are in demand, both as biological tools and as chemotherapeutic agents, especially against drug-resista...

متن کامل

Microbial hydroxylation of 16α, 17α-epoxyprogesterone by Penicillium decumbens

Microbial transformation has been successfully applied in the production of steroid intermediates with therapeutic use and commercial value in pharmaceutical industry due to its high regio- and stereo-selectivity. As such, it is still important to screen microbial strains with novel activity or more efficient abilities in the development of the commercial steroid industry. Biotransformation of ...

متن کامل

Oxidative Aromatization, Cytotoxic Activity Evaluation and Conformational Study of Novel 7-aryl-10, 11-dihydro-7H-chromeno [4, 3-b]quinoline-6, 8(9H, 12H)-dione derivatives

In the present work, novel 7-aryl-10, 11-dihydro-7H-chromeno [4, 3-b]quinoline-6, 8(9H, 12H)-dione derivatives were synthesized by oxidation of 7-aryl-8, 9, 10, 12-tetrahydro-7H-chromeno[4, 3-b]quinoline-6, 8-diones in the presence of silica sulfuric acid/NaNO2 with yields of 64-74%. Cytotoxic activity of synthesized compounds was assessed on three different human cancer cell lines (K562, LS180...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of antibiotics

دوره 56 1  شماره 

صفحات  -

تاریخ انتشار 2003